
Using Probabilistic Characterization
to Reduce Runtime Faults in HPC Systems

Jim Brandt∗, Bert Debusschere†, Ann Gentile∗, Jackson Mayo◦,
Philippe Pébay◦, David Thompson∗, and Matthew Wong◦

Sandia National Laboratories
MS ∗9152 / ◦9159 / †9051

P.O. Box 969, Livermore, CA 94551 U.S.A.
{brandt,bjdebus,gentile,jmayo,pppebay,dcthomp,mhwong}@sandia.gov

Abstract—The current trend in high performance comput-
ing is to aggregate ever larger numbers of processing and
interconnection elements in order to achieve desired levels of
computational power, This, however, also comes with a decrease
in the Mean Time To Interrupt because the elements comprising
these systems are not becoming significantly more robust. There
is substantial evidence that the Mean Time To Interrupt vs.
number of processor elements involved is quite similar over a
large number of platforms. In this paper we present a system that
uses hardware level monitoring coupled with statistical analysis
and modeling to select processing system elements based on where
they lie in the statistical distribution of similar elements. These
characterizations can be used by the scheduler/resource manager
to deliver a close to optimal set of processing elements given the
available pool and the reliability requirements of the application.

I. INTRODUCTION

Since it appears that High Performance Computing (HPC)
system elements will continue to have unexpected failures for
the foreseeable future, the HPC community has been putting
significant effort into building fault tolerant systems. Fault
tolerance work is ongoing in system software, scheduling and
resource management, and application software. Perhaps the
most important fault tolerance mechanism utilized in current
HPC systems is checkpoint and restart. Since use of this
mechanism requires both time and system resources a lot of
effort has been put into optimizing job size and checkpoint
and restart intervals and strategies [1].

There has been substantial work [1], [2] done to characterize
HPC platforms in terms of identifying gross system failure cat-
egories and average frequency of failures within these. These
failures are grouped into hardware, software, application, I/O,
human related, etc. categories, each with its own distribution of
mean time to occurrence vs. system size. These characteristics
are important because they allow system level failure models
to be built. These models can be used for application node
allocation and checkpoint frequency optimizations as well as
for making projections for the needs of future systems.

These authors were supported by the United States Department of Energy,
Office of Defense Programs. Sandia is a multiprogram laboratory operated
by Sandia Corporation, a Lockheed-Martin Company, for the United States
Department of Energy under contract DE-AC04-94-AL85000.

Still, a major impediment to scaling HPC systems is com-
ponent mean time to failure. While the number of system
components is undergoing exponential growth, the robustness
of the components themselves seems to be relatively constant.
The result is that as application runs become larger, in terms of
number of components involved, the time between checkpoints
has to become smaller. To some extent this can be offset [1]
by the speedup in checkpointing due to the larger number of
participating elements in conjunction with faster file systems.
There is, however, a practical limit to I/O bandwidth based on
hard drive failure rates [2].

While we believe that fault tolerance in HPC can be
enhanced by application awareness of underlying hardware
characteristics, burdening the application programmer with
low level hardware-related data gathering and analysis is not
practical. To date even system manufacturers have not tackled
this problem and are still shipping monitoring packages with
their systems that address only threshold-based fault detection
which typically does not leave time between detection and
failure for applications to respond, if, indeed, they even receive
notification.

Thus, the overall goal of our research is to increase ap-
plication performance on HPC platforms through historic and
runtime characterization of the underlying hardware in such
a way that it can give meaningful and timely guidance to
the OS, the scheduler and/or resource manager (RM), and the
application thus increasing the mean time to interrupt (MTTI)
on a given number of nodes. In this paper we present a proof of
concept system for such characterizations and their utilization
in resource management decisions. It includes a monitoring
and analysis system that uses statistical and probabilistic
characterizations of system elements in the context of their
environments to infer the relative health of these elements. An
API allows the system to be queried for a list of elements and
associated characteristics from which the scheduler/RM can
assign resources and an application can calculate checkpoint
frequency and identify I/O resources to use.

This paper is organized as follows: first we introduce related
work and its relevance. We then describe our technical ap-
proach and show how it can be used to choose job appropriate
system elements in order to tailor the expected MTTI to
the application, number of process elements, etc. as well as



provide run time feedback to the application. We then present
some preliminary findings based on our proof of concept
deployment. Finally, we present planned extensions of our
approach to additional aspects of the HPC reliability problem.

II. RELATED WORK

There has been substantial work in the area of fault tolerance
though most has focused on quantifying how MTTI scales
as a platform increases in aggregate compute power and
mechanisms to deal with the fact that such failures will occur.

Daly [1] has shown how run time efficiency can be op-
timized using historic Mean Time To Interrupt curves in
conjunction with other system parameters such as I/O write
rate, and Parallel Scaling. Schroeder and Gibson [2] have
done extensive work in exploring failure data sets on exist-
ing large computational platforms. Their research shows that
hardware failures account for more than 50% of node outages
experienced over a 9 year period on 22 HPC systems at Los
Alamos National Laboratory (LANL). They also show that
failures increase as the number of CPU sockets in a system
increases. They further make the case that it is likely that
aggregate computational power for the foreseeable future will
come from just such increases. Their exploration of current
and alternative checkpointing techniques and associated pros
and cons parallels those of others such as Oldfield [3]. All
such work seems to draw the conclusion that current fault
tolerance techniques, namely checkpoint and restart, in their
current form coupled with the seemingly fixed relationship
between number of CPU sockets and MTTI imply that run
time efficiency will continue to fall as computational platforms
become larger. While they all propose schemes that could
increase the checkpoint and restart efficiency given some
constraints on memory footprint on nodes and I/O bandwidth
growth, there seems to be agreement that the per socket fault
rate will hold steady.

There has also been work by Gottumukkala et al. [4] on us-
ing historical failure data from a particular platform to quantify
reliability of nodes on that platform. This reliability data would
in turn be used to drive application decomposition and node
allocation in order to optimize job run time. The Coordinated
Infrastructure for Fault Tolerant Systems (CIFTS) [5] initiative
seeks to construct an extensive fault aware framework in order
to address fault tolerance through more open communications
between all system components.

In contrast to these efforts, our research seeks to increase
the MTTI for an application by hand-picking, as it were,
components whose relative probability of failure is minimized
given the number of nodes requested, expected runtime, and
available resource pool. We seek to quantify failure distribu-
tion characteristics as they relate to the real-time statistical
distributions of parameter values of compute elements. Such
characterizations would allow us to identify run-time system
degradation issues without requiring extensive historic or
platform specific data. We believe that use of this methodology
can drive down the hardware fault related application interrupts
on applications.

III. TECHNICAL APPROACH

We take a statistical approach to detection of elements
having anomalous behavior. Today’s HPC systems have aggre-
gations of thousands of identical components. Our expectation
is that these components should behave similarly within a
similar environment. Our approach then is to statistically
characterize how these elements behave and identify statistical
outliers as elements being more likely to fail. In previous
work [6] we have shown that for some problems this type
of identification can indicate problems before they reach the
failure stage. We then use these statistical characterizations in
conjunction with application resource requirements to make
resource usage decisions. This information is exchanged via an
interface for communication amongst the the low level element
characterization the application, and the scheduler/resource
manager.

Our methodology allows us to target resources based
upon their component parameters’ distribution characteristics,
whether or not the parameters are known to be directly
indicative of future failure. This is significant for dealing with
cases where the causes of failure of a component are not well
understood, or where the component is degrading in a way that
is not reflected in historical failure records, such as effects due
to aging or changing environmental conditions.

In this section we first describe our tool, OVIS, for hardware
analysis and element characterization, and our characterization
methodology. We then present motivations for our statistical
characterizations to be used as the basis for resource usage
decisions. Finally, we present proposed interactions between
an Application, Scheduler/RM, an Allocation Evaluator, and a
Hardware Analysis and Monitoring System.

A. Hardware analysis and element characterization tool

For hardware analysis we use our distributed tool for
scalable data collection and analysis, OVIS [7], [8]. OVIS uses
historic and/or run time data to characterize hardware elements
in statistical and/or probabilistic terms, such as descriptive
statistics, correlations, and parametric Bayesian models. In
particular, on the basis of such characterizations, historic and
run time data, each element’s degree of “abnormality” can
be quantified based on where it lies relative to an applicable
model.

Currently, a person setting up the analyses on a system can
specify in terms of standard deviation what they want defined
as an “outlier”. OVIS returns a running list of “outliers” which
is updated whenever new data arrives. The distributions and
models can also be dynamically modified to represent how
new data may have modified them.

In the following subsections, we cover OVIS’s data collec-
tion approach, its element characterization methodology, and
its analysis engines’ functionalities with emphasis on those
aspects to be used in resource management decision support.

1) Data Collection: Getting data with which to characterize
system elements is critical to this scheme. Since it is unknown,
even by the system vendors, what characteristics of what
elements are critical in diagnosing system health, we attempt



to collect as much data as possible with as high a frequency
as possible. Our goal is to discover critical health metrics
and an optimal collection frequency with the hope that these
will be a small subset of the the total possible. Currently,
depending on platform, we collect voltages, temperatures, fan
speeds, NIC, and SMART disk controller data. These data are
collected via SNMP, IPMI, in band, and proprietary samplers
with a periodicity ranging from once a second to once an
hour. If, however, this technique shows promise we envision
having a standard set of metrics that we would approach the
HPC vendors about exporting using a standard out of band
mechanism.

2) Element characterization methodology: A problem with
the traditional HPC system monitoring tools is that they only
provide information when a fault has already occurred or a
critical threshold has been crossed necessitating a management
system forced fault (e.g., a shutdown or reboot). In either
case the information is too late and the only useful outcome
of having a management system at all is that it can cause
the scheduler/RM to kill and restart the job as opposed to
having it possibly hang until it times out or the owner notices
it hasn’t made progress. OVIS by contrast uses a variety of
analysis engines to characterize the element’s parameters in
probabilistic terms based on their statistical distributions given
their environments. The advantage of this is that, for failures
that are evidenced by degradation in some element parameter,
a measure of relative probability of anomalous behavior can be
used to estimate stability of the element. Thus not only can the
system be used to identify probabilistic outliers but conversely
can identify relatively normal or well behaved elements for use
in an application run.

One of the goals of the OVIS project is to be able to
quantify the probability of failure in a given time window
for an element based on where it lies relative to its reference
distribution and historic failure data of such elements. A
simple example of the utility of this is in resource management
would be that an application requesting 1000 nodes for 1000
hours might be handed nodes from a current free list starting
with the one whose parameters weighted distance from the
mean is the minimum and working out from there. Conversely
an application requesting 10 nodes for an hour might well be
handed the 10 whose parameters weighted distance from the
mean was the greatest without being categorized as an outlier
(outliers, being defined as elements whose parameter values
lie outside of acceptable bounds with respect to a reference
model or distribution, would be removed from the “available
resource pool” by the resource manager).

Additionally, unlike the aforementioned traditional moni-
toring systems, since OVIS can track the runtime status of
these parameters relative to their reference distributions and
their starting point, it can notify the application of increased
probability of failure based on a shift. This would allow
the application to checkpoint a particular node’s data and
request a replacement. If, with the addition of historic failure
data, one can correlate distance from mean of some reference
distribution with quantification of failure probability in a

time window then not only could the scheduler be given the
information to hand an application the currently optimal set
of resources but the application could re-adjust its checkpoint
frequency based on the allocated resource characteristics.

3) Analysis engines: Data analysis in OVIS is conducted
by the means of statistical engines that can operate in parallel
in order to address large data sets. The execution modes of
these analysis engines – in other words, the types of tasks that
such engines may perform – can conceptually be classified as
follows:

• Learn: in this mode, data is viewed as an absolute
reference, from which a model is calculated or inferred.
Such a model can take several forms, such as moments,
estimators, PDF, etc.. The output of this execution mode
is thus a model, or, more specifically in the context of
OVIS the most likely set of parameters of the model given
the training data.

• Validate: here, data is still viewed as an absolute refer-
ence, but a model is now available; the goal is then to
assess – and this assessment can be conducted in a variety
of ways – the adequacy of this model to the data. The
validate mode thus outputs the result of this assessment.
Note that this can, but does not have to, be a number.

• Monitor: the roles are here interchanged with those of
the learn mode: the unquestionable reference is now the
model, with respect to which data is inspected. The output
of the monitor mode is a collection of reportable cases,
described in a way that allows for unambiguous and
efficient retrieval of the particular components and times
to which these correspond, when available; the output
may also be presented as an ordered list so as to reflect
a gradation in severity or abnormality of behavior. Note
that reportable cases may occur either when a particular
event diverges from the model more than what has been
set as acceptable or because no (or fewer than specified)
events of a particular type occurred. For instance, outliers
– which may be defined in several ways depending on the
type of model being used – can be identified as elements
of the data set that deviate from what the model predicts
within pre-defined acceptability bounds.

Within this abstract framework, OVIS currently implements
three analysis engines. Note that not all of them implement
each of the three conceptually possible execution modes.
These analysis engines are:

• Descriptive statistics: this analysis engine offers learn,
and monitor execution modes. In learn mode, descriptive
statistics are calculated (estimators of the mean, standard
deviation, skewness, kurtosis, as well as bounds) in order
to provide a purely descriptive statistical characterization
of the data set of interest. This information can be used
per se, or be fed into the monitor mode, or be used
elsewhere than within the descriptive statistics engine –
for example, as a helper to specify priors for Bayesian
parameter estimation. In monitor mode, the user can
specify purely descriptive parameters – which may or



may not come from an earlier execution of the learn
mode – such as: nominal value, acceptable deviation, and
acceptable range. In particular, this mode enables outlier
detection for two possible definitions (and use cases) of
this concept: namely, variation from a value considered
as “correct” or “normal”, and thresholding. The latter use
case alone replicates what current cluster monitoring tools
typically offer. Note that there is currently no validate
mode for the descriptive statistics engines.

• Correlative statistics: this analysis engine currently only
implements the learn execution mode: the goal is to
evince linear correlation between two different metrics.
This is especially useful to prevent the user from conduct-
ing more advanced and costly analysis such as running a
Bayesian engine when linear correlation between metrics
can be evinced. Even though a monitor mode is not
currently implemented it is potentially of great interest
to be able to report when 2 correlated variables begin to
decorrelate – or, the other way around.

• Bivariate Bayesian: this analysis engine implements
all 3 execution modes within the context of parametric
Bayesian inference modeling. In learn mode, the param-
eters of a probabilistic model that describes the depen-
dency of a metric on another are inferred from the input
data viewed as training data. In this mode, a parametric
model as well as a prior must be provided to the analysis
engine before the calculation can proceed; the descriptive
and correlative analysis engines are useful here since they
allow the user to come up with a “first cut” that is not
completely uninformed – thus ensuring faster parameter
identification and/or better accuracy. In validate mode,
the analysis engine conducts the comparison of the data
of interest vs. the provided model along with a set of
parameters, and returns a number that can be interpreted
either as a sign that the model is not valid in this context
(if one “trusts” the data – or defined as the norm for
instance during a calibration process), or as an indication
that the data as a whole is problematic (if one “trusts” the
model instead – for instance if it has been inferred under
comparable conditions). Finally, the monitor execution
mode calculates the likelihood of the data as it is sifted
through the model with its parameter values provided as
an input, for instance after they have been calculated in
learn mode with “trustable” training data. Details of the
Bayesian engine methodology are outside the scope of
this paper, but a brief illustration of a model generated
in learn mode is presented in Figure 1 [8].

B. Statistical Characterizations for Resource Management
Decision Support

We seek to utilize statistical characterizations in order to
make intelligent resource management decisions. As men-
tioned previously, our statistical methodolgy allows us to target
nodes based upon their parameter distribution characteristics,
whether or not the parameter is known to be directly indicative
of future failure. If a particular parameter has not been

Fig. 1. Probabilistic model for CPU Temperatures in a particular rack in a
particular cluster. The model consists of a Gaussian random variable whose
mean is a unknown quadratic of relative height, and with unknown variance.
The parameters of the quadratic function and the variance of the Gaussian
were determined by the bivariate Bayesian inference engine using a small set
of training data.

conclusively tied to a failure mode, a node exhibiting statistical
irregularly in that parameter can still be assigned to short-lived
or low-priority jobs, for example, short initial test runs. Failure
associations can then be discovered without pre-emptively
taking any such nodes out of the pool, but with minimal impact
to the higher-value jobs.

We list some examples of run-time statistical characteriza-
tions that we have performed that can be used to assist in
resource management decision support. These are pre-failure
diagnostics and would not be caught by methodologies relying
on historical failure data logs.

1) In our analysis of a particular HPC platform at Sandia, by
using the descriptive statistics engine, we found that voltages
of several thousand like components had approximately nor-
mal distributions overall. There were, however, consistently
two statistical outliers, one six standard deviations from the
mean and the other ten. We currently know of no relationship
between voltage abnormality and failure for this element.
In our proposed system, since there is the possibility of
timing or other problems resulting from the deviations we
would keep these nodes in the resource pool to be used for
known short lived jobs. In addition, we would continue to
actively monitor these nodes to see if this parameter can
be used as an indicator of impending failure. If so, in the
future, nodes having significant outlier characteristics in this
parameter might then be removed from the pool for servicing.

2) In another example we found a node having a CPU
which, under load, had it’s temperature fall five standard
deviations below the mean of it’s reference model. While this
may not seem bad given that low temperatures (above the
dew point) are generally viewed as good for the longevity of
electronic components, it turned out to be indicative of a fan
controller failure.

3) We are currently monitoring a group of 160 hard drives



via smartctl [9]. This interface provides manufacturer de-
fined thresholds for determining when disk parameters have
degraded to a point that a disk should be removed from
service. Consideration of a disk in singleton gives little to
no indication if that disk’s parameter’s rate of approach to a
threshold is reasonable, and, as the values are often expressed
in scaled quantities, the values themselves are not intuitively
comprehensible. Because our analysis system evaluates each
disk’s variable values in terms of the distributions for the
whole set of disks, if a small subset were to degrade faster
than the rest they would become an outliers and viewed as a
less reliable components. This would result in a hint from the
underlying monitoring and analysis system to applications as
to their degraded degree of reliability.

Analyses such as those above would be performed by
system engineers and administrators in order to discover
system abnormalities and failure associations. The investiga-
tions would include both descriptive statistics upon the data
collected in order to discover unsuspected issues (e.g., general
temperature distributions in the system) and more targeted
calculations based upon domain knowledge of potential issues
in the system (e.g., geographical distributions that may arise as
a result of the system set up and air flow design). As significant
abnormalities and failure associations are discovered these can
then be used as variables and parameters to be considered
in determining resource allocations, as discussed in the next
section.

C. Application, Scheduler/RM, OVIS interaction

This is in the planning phase and we are currently writing a
proof of concept implementation and collecting reference data
on several platforms. We describe here the currently planned
architecture.

Fig. 2. Diagram of proposed interaction of Application, Sched-
uler/ResourceManager, and Analysis/Monitoring System (OVIS) by which an
application submission can specify job requirements, a statistical analysis is
done to determine nodes that will best satisfy that request in context of all
the other jobs in the cluster, and the job allocation will occur.

A block diagram of interaction is illustrated in Figure 2.
An application request can specify job requirements to the
scheduler/RM. The requirements can be as simple as expected
runtime, or, if supported, could include other requirements
such as minimum acceptable MTTI. These more advanced
requests would of course require an Analysis System with
access to applicable data coupled with the ability to per-
form the required calculations. The scheduler then passes the
requirements on to an Allocation Evaluator. The Allocation
Evaluator queries the Analysis System for relevant statistics
on resources meeting the parameters of the request. In the
case of a high priority, long lived job, this may translate
into a request for nodes with parameter characteristics closest
to the mean of the distribution for a number of element
parameters. It is not intended that the general user need have
a detailed knowledge of the significant parameters for failure
associations. Rather as those are determined by system admin-
istrators or engineers, significant parameters and values can
be defined. Thus, a typical user would only have to indicate
job priority, while the Allocation Evaluator would request
statistics on the appropriate resources meeting predetermined
probabilistic requirements. More system-aware users could
still make higher complexity requests.

The Analysis System has an API by which a probabilistic
distribution of nodes with respect to the requested constraints
can be requested and returned. The Allocation Evaluator
can then weigh the returned statistics in order to determine
the node allocation to recommend to the scheduler. In the
event that there are not enough statistically satisfying nodes
available, a job could be held until more satisfying nodes
become available. An upper bound on this time could be
determined by the current node allocation and current job time
limit.

In Figure 2, dashed lines indicate pieces or interactions
in development; solid lines indicate pieces or interactions
which are currently in existence. Our Allocation Evaluator
is currently a script that is evoked in either the scheduler’s
prologue script or the job submission script. It passes the
request to the HW Analysis system and chooses nodes either
from “best to worst” or “worst to best” based on a requested
node hour threshold. We currently define an API for invoking
and returning descriptive and correlative statistics within OVIS.

The proof of concept system can also determine and report
system degradation with the intent of enabling preemptive re-
source reallocation. This is illustrated in Figure 3. In this case,
there are a set of statistical requirements that the HPC system
(or an assigned subset) must satisfy in order to be considered in
good health. The Analysis and Monitoring System calculates
running statistics on the quantities of interest and has an
API to report when the statistics have changed in a way that
indicates component degradation. This information is intended
to be reported to the scheduler and the affected components
taken out of the assignable pool of nodes. Applications that
provide an interface for checkpointing can be instructed to
checkpoint, or checkpoint more frequently, when degradation
occurs. (Again, as in Figure 2, dashed lines indicate pieces



or interactions in development; solid lines indicate pieces or
interactions which are currently in existence.)

Fig. 3. Diagram of proposed interaction of Application, Sched-
uler/ResourceManager, and Analysis/Monitoring System (OVIS) by which
system degradation can be determined and used to perform resource real-
location.

IV. PRELIMINARY FINDINGS

We currently have prototype deployments of the OVIS moni-
toring and analysis system on several production HPC systems
at Sandia National Laboratories. Currently, we most frequently
run in the learn and monitor modes in order to determine
statistical distributions of run time values and detect outliers.
Though we don’t currently have enough failure data to make
correlations between failures and the failed node characteris-
tics with respect to their reference models and/or distributions,
we have been able to quantify a measure of relative probability
for node related element parameters. We are able to query
for lists of nodes based on how far a particular parameter
for each lies from the mean of that parameter’s reference
distribution. We can also discover shifts in the distribution’s
characteristics and shifts in a particular node’s relative position
within that distribution. In our prototype deployment on a
storage appliance we are able to, in addition to the node level
information, get disk operation parameter information. Since
we retain all of the data we can, as failure data comes in, start
to do correlative analysis between failures and the underlying
hardware characteristics.

V. FUTURE WORK

We are currently working on a time series analysis engine
which will be part of this framework. This will allow temporal
characterization of system parameters with respect to the par-
ticular application utilizing the elements being characterized.
We would like to expand the scope to include detection of
elements exhibiting abnormal temporal behavior with respect
to the similar elements participating in a particular application

run. Along these same lines we would like to explore how
different application input parameters affect this behavior.

Finally we would like to explore taking into account an ap-
plication’s dominant communication patterns when doing node
allocation so as to optimize run time application performance.
I/O and storage component usage for an application could also
be driven by requested storage hardware hints requested by the
application and passed to it.

VI. CONCLUSION

Though we are seeing an explosion in node counts in
new HPC platforms the failure rate of individual components
seems to be staying constant. This combination is driving the
system MTTI down thus burdening applications with the ever
increasing overhead of higher checkpoint frequencies which
in turn decreases the computational efficiency. In this paper
we present a scheme for changing this trend by increasing the
effective MTTI through hardware level monitoring, analysis,
and characterization. Since, according to studies over a signifi-
cant number of platforms, greater than 50% of these interrupts
are due to hardware faults we believe this approach can have
a significant impact.

REFERENCES

[1] J. T. Daly, “Performance challenges for extreme scale computing,”
http://www.pdsi-scidac.org/publications/, SDI/LCS
Seminar Series, Oct. 2007.

[2] B. Schroeder and G. A. Gibson, “Understanding failures in petascale
computers,” SciDAC 2007 J. Phys.: Conf. Ser., vol. 78, no. 012022, 2007.

[3] R. A. Oldfield, “Investigating lightweight storage and overlay networks
for fault tolerance,” in High Availability and Performance Computing
Workshop, Santa Fe, New Mexico, Oct. 2006.

[4] N. R. Gottumukkala, C. B. Leangsuksun, and S. Scott, “Reliability-
aware approach to improve job completion time for large-scale parallel
applications,” in Proc. IEEE 12th International Symposium on High-
Performance Computer Architecture (2nd Workshop on High Performance
Computing Reliability Issues), Austin, Texas, Feb. 2006.

[5] “CIFTS,” http://www.mcs.anl.gov/research/cifts/.
[6] J. M. Brandt, A. C. Gentile, Y. M. Marzouk, and P. P. Pébay, “Meaningful

automated statistical analysis of large computational clusters,” in IEEE
Cluster 2005, Boston, MA, Sept. 2005, Extended Abstract.

[7] J. M. Brandt, A. C. Gentile, D. J. Hale, and P. P. Pébay, “OVIS: A tool for
intelligent, real-time monitoring of computational clusters,” in Proc. 20th
IEEE International Parallel & Distributed Processing Symposium (4th
Workshop on System Management Techniques, Processes, and Services),
Rhodes, Greece, Apr. 2006. [Online]. Available: http://www.ipdps.org

[8] “OVIS,” http://ovis.ca.sandia.gov.
[9] “SMARTMONTOOLS,”

http://smartmontools.sourceforge.net.


